Job Description
- Create and maintain optimal data pipeline architecture
- Assemble large, complex data sets.
- Identify, design, and implement internal process improvements: automating manual processes, optimizing data delivery, re-designing infrastructure for greater scalability, etc.
- Build the infrastructure required for optimal extraction, transformation, and loading of data from a wide variety of data sources using SQL and Azure ‘big data’ technologies.
- Build analytics tools that utilize the data pipeline to provide actionable insights into customer acquisition, operational efficiency and other key business performance metrics.
- Work with stakeholders including the Executive, Product, Data and Design teams to assist with data-related technical issues and support their data infrastructure needs.
- Keep our data separated and secure across national boundaries through multiple data centres.
- Create data tools for analytics and data scientist team members that assist them in building and optimizing our product into an innovative industry leader.
- Work with data and analytics experts to strive for greater functionality in our data systems.
Qualifications for Data Engineer
We are looking for a candidate with 4+ years of experience in a Data Engineer role, who has attained a Graduate degree in Computer Science, Statistics, Informatics, Information Systems or another quantitative field. They should also have experience using the following software/tools:
- Experience with big data tools: Hadoop, Spark, Kafka, Power BI etc.
- Experience with relational SQL and NoSQL databases, including Postgres and Cassandra.
- Experience with data pipeline and workflow management tools: Azkaban, Luigi, Airflow, etc.
- Experience with Azure cloud services: Azure Databricks, Azure Synapse, Azure Data Factory, Azure Data Lake
- Experience with stream-processing systems: Storm, Spark-Streaming, etc.
- Experience with object-oriented/object function scripting languages: Python, Java, C++, Scala, etc.
- Experience performing root cause analysis on internal and external data and processes to answer specific business questions and identify opportunities for improvement.
- Strong analytic skills related to working with unstructured datasets.
- Build processes supporting data transformation, data structures, metadata, dependency and workload management.
- A successful history of manipulating, processing and extracting value from large disconnected datasets.
- Working knowledge of message queuing, stream processing, and highly scalable ‘big data’ data stores.
- Strong project management and organizational skills.
- Experience supporting and working with cross-functional teams in a dynamic environment.
Educational Background
- Tech (CS/IT), M. Tech (CS/IT), MSc. (CS/IT) from any recognized university.